Visualization with stylized line primitives

Carsten Stoll*

Stefan Gumbhold®

Hans-Peter Seidel*

Max Planck Institut fuer Informatik
Saarbruecken

Figure 1: Several examples of objects and streamlines rendered with our algorithm.

ABSTRACT

Line primitives are a very powerful visual attribute used for scien-
tific visualization and in particular for 3D vector-field visualization.
We extend the basic line primitives with additional visual attributes
including color, line width, texture and orientation. To implement
the visual attributes we represent the stylized line primitives as gen-
eralized cylinders. One important contribution of our work is an ef-
ficient rendering algorithm for stylized lines, which is hybrid in the
sense that it uses both CPU and GPU based rendering. We improve
the depth perception with a shadow algorithm. We present several
applications for the visualization with stylized lines among which
are the visualizations of 3D vector fields and molecular structures.

CR Categories: 1.3.7 [Computer Graphics]: Rendering and
shading—Visualization of vector-/tensor-fields

Keywords: rendering, vector fields, streamlines

1 INTRODUCTION

The visualization of dense 3D data sets such as 3D vector fields is
one of the most difficult problems in scientific visualization. The
central problem is occlusion, what rules out the use of a dense vi-
sual representation of the data set. Techniques like 3D LIC can only
be used in conjunction with slicing techniques that restrict the visu-
alized data again to a 2D subset. For an actual 3D visualization one
therefore has to fall back to sparse visual representations. Among
these are iconic representations and line primitives. The latter has
the additional advantage that it not only shows local but also global
features of the underlying data. Although these sparse representa-
tions allow a better view into the data, it is quite difficult to achieve

*e-mail:stoll @mpi-sb.mpg.de
Te-mail:sgumhold @ mpi-sb.mpg.de
*e-mail:hpseidel @mpi-sb.mpg.de

IEEE Visualization 2005
October 23-28, Minneapolis, MN, USA
0-7803-9462-3/05/$20.00 ©2005 IEEE.

good depth perception. Thus one has to use as many of the visual
cues for depth perception as possible, i.e. occlusion, perspective
shortening, illumination and shadow effects.

In this paper we extend line primitives, which are commonly
used for visualization in 3D, by several additional visual attributes
and a visual representation that improves the depth perception sig-
nificantly. As geometric and visual representation we propose to
actually blow up the line primitives to real 3D primitives, which we
denote stylized line primitives. Similar to stream tubes we chose to
use generalized cylinders with a circular profile. The illuminated
rendering of generalized cylinders gives a very good depth percep-
tion as can be seen in Figure 1. Furthermore, it allows the use of ad-
ditional visual attributes. Here we investigate radius, color as well
as textures of colors and normals. Rotation of the textures along
the line primitives gives another well perceivable visual attribute —
the orientation. Finally, we add a halo to improve depth perception
even further.

A visualization technique is only valuable if it allows for real-
time navigation in a potentially time-dependent data set. Therefore,
the major contribution of this work is an efficient rendering algo-
rithm for stylized line primitives. Although rendering algorithms
exist for generalized cylinders, non of the existing algorithms al-
lows for real-time navigation of large data sets with high image
quality. Our new algorithm combines the speed of splatting based
algorithms with high image quality, which is achieved by a hybrid
approach that uses fast GPU supported splatting for most stylized
line primitives and a CPU based tessellation in regions where the
simple splatting approach leads to noticeable artifacts. We achieve
a speed up of three in comparison to a purely tessellation based ap-
proach for static data sets and a speedup of a factor of up to 6 for
time-dependent data sets. These speed ups are mainly due to the
reduced amount of geometry data that has to be transfered to the
GPU and processed there.

In the remainder of the paper we first discuss related work, in-
troduce the stylized line primitive in section 3, detail the hybrid
rendering approach in section 4, measure the performance and per-
formance gains in 5 and apply the new visualization technique to
several applications in section 6.

695

696

2 PREVIOUS WORK

The visualization of 3D flows using streamlines as a sparse and fast
representation method has been researched for a long time now. An
important factor here is a good distribution of samples across the
flow and a good path-tracing algorithm to integrate streamlines in
a vector- or tensor-field. A comprehensive overview of such tech-
niques can be found in [13].

Several methods have been introduced to visualize streamlines
in the past years. Ueng et al. [15] use stream-ribbons and stream-
tubes to visualize the flow, the first being a quad strip generated by
the streamline and a normal vector extracted with it and the second
being a generalized cylinder with a circular profile where the radius
depends on the flow velocity. No efficient rendering algorithm for
the stream-tubes was proposed though. Fuhrmann and Groller [6]
use generalized cylinders with opacity textures to represent dashed
stream-tubes. They propose a simple tessellation scheme with 6 to
8 subdivisions along the cylinder. Zdckler et al. [16] introduced the
simple to render illuminated streamlines, which is a lighting model
for line primitives based on the Phong lighting. This enhances depth
perception to some extent only and does not give a ductile impres-
sion of the stream-lines especially when using varying thickness.
Mattausch et al. [11] later presented a comprehensible overview
of methods for visualizing flows using illuminated streamlines, in-
cluding levels of detail, magic volumes and halos.

Schussman and Ma [14] introduced a method for rendering
huge amounts of streamlines using volume visualization, but their
method aims for extremely dense fields and is not able to provide
interactive frame-rates.

General cylinders where introduced by Agin and Bindford [1] in
1976 as a method to describe and model curved objects. Different
methods for visualizing these have been proposed later, including
ray tracing ([5]) and different polygonalization methods ([4], [2],
[7D.

Some special attention has also been paid to the rendering of
generalized cylinders with circular profile. Main contributions here
are the Optimal Tubes [3] by Blinn, who adaptively tessellates a
tube at the silhouette edges and lighting dependent positions and
Faintstrokes by Neulander and van de Panne [12], who present dif-
ferent tessellation methods for rendering circular generalized cylin-
ders. All the tessellation methods lead either to a huge number of
rendering primitives or a bad image quality with artifacts. Our ap-
proach on the other hand optimally combines GPU based rendering
exploiting fragment shaders with CPU based adaptive tessellation.
One very important design criterion for the fragment shaders was to
keep them as simple as possible in order to achieve high fill rates.

3 STYLIZED LINE PRIMITIVES
Stylized line primitives are defined as generalized cylinders. A gen-
eralized cylinder is composed of a continuous path P(7) in 3d space

and a closed two dimensional profile I1(¢) = (px(¢), py(¢)). We
assume that the curve defining the path is regular, i.e. the path tan-

gent T(t) does not vanish:

T(1) = 9P(t) £ 0

Furthermore, we restricted ourselves to circular profiles of radius
R(7), so

_ sin(9)
mg) (o) (8) 0<o<om W
The surface of the general cylinder can thus be described by

§(7,9) = P(7) +11(¢) - £(7) +10,(¢) - §(7) ()

Figure 2: Schematic of a continuous general cylinder with circular
profile and a discretization.

Figure 3: One segment of the discretized stylized line is spanned by
two tangential circles parameterized synchronously over ¢. Left: 3d
view, Right: viewed along the ri; =, direction.

where £(7) and §(7) are two orthonormal vectors that span the plane

orthogonal to the tangent vector 7(7).

Generalized cylinders can be visualized in different ways. As
our goal is the interactive visualization of a large number of stylized
lines ray tracing based approaches drop out. In order to be able to
exploit modern graphics hardware we chose a splatting based ap-
proach. For this the continuous path of a generalized cylinder P(7)
is sampled at discrete path parameters 7;, resulting in a set of points
p; = P(t;) with i = 0...n. The discretization is done in advance
or during construction of the path with a flow integration method.
It is advantageous to adapt the sampling resolution to the curvature
such that a higher resolution is chosen in high curvature regions and
a smaller resolution in low curvature regions. In our work we fol-
lowed the approach of Gumhold [9] for adaptive subdivision, which
is based on a maximal discretization error €myx.

To discretize the generalized cylinder each point p; is attributed
with the circle describing the profile at path parameter 7;. The pro-
file circle is uniquely defined by its radius r; = R(7;) and the tan-

gent vector f; = T(‘E[) or its normalized version #;, respectively. All
the necessary information is gathered in a vertex V; = (p;,4;,7i,...),
which is later extended by color and texture coordinates.

In this way the discretization splits the stylized line primitive into
segments, where each segment is defined by two consecutive ver-
tices V; and V; 1, i.e. profile circles. Figure 3 a) illustrates the two
circles defined by the vertex data. One way of defining the geom-
etry of each segment from the vertex data is to use the convex hull
of the two circles. This has the advantage that the convex hull of
the 2d projection of the 3d segment could be computed from the 2d
convex hull of the projected circles and that the hull is spanned by
straight line segments. On the other hand is it quite complicated to
find these line segments and to correctly illuminate the convex hull.
Instead we define the geometry by using the @-parameterization
of the circular profiles. We simply connect points of equal ¢ on
the two circles with straight line segments as illustrated for ¢ = o

in Figure 3 a). For this to work one has to synchronize the lo-
cal frames {%(7;),y(7;)} and {®(7;+),§(7i+1)} appropriately. The
vectors £(7;/7;+1) correspond to the ¢ = 0 angles and uniquely de-
fine the correspondence if we assume right handed coordinate sys-
tems {£,9,7};/;,1. Furthermore it is not important to use a single
%(7;) for the two segments (V;_;,V;) and (V;,Vi1|). Therefore we
can define the correspondence for each segment independently in
the following way. In the case when the two tangent vectors 7; and
741 are parallel, the two circles lie in parallel planes and any choice
of parallel £;/; in this plane can be used. In the case of differing
tangents, we chose £;/;,1 in the direction of the intersection line

of the two circle planes, i.e. parallel to #; x fiy 1. The intersection
line is drawn in dotted style in Figure 3 a). Figure 3 b) shows the
situation in 2d, viewed along the direction of the intersection line,
i.e. along the synchronized directions £;/; 1.

In order to illuminate the discretized stylized lines we interpolate
the normal vectors along the connection lines of equal ¢ parame-
ter values. At the end points on the two profile circles we chose
the normal in the plane of the circle. This does not reflect the illu-
mination of the actual geometry of each segment, what would lead
to uncontinuous normals where two segments meet. Our choice
on the other hand synchronizes the normals of adjacent segments
at their common circle resulting in continuous normals and much
better lighting results.

The brute force splatting approach simply tessellates each seg-
ment with a quad strip. For medium viewing distances a tessella-
tion with eight quads per segment resulted in an acceptable qual-
ity. This approach is however extremely expensive since a large
amount of geometry data is created and has to be transfered over
the graphics card bus. A segment extended by per vertex color in-
formation polygonized into a quad strip of length eight results in 18
render vertices, each consisting of position, normal and color, sum-
ming up to 180 floats or 720 bytes of data per segment. While this
is no problem for short stylized lines we quickly reach the transfer
bandwidth or vertex processing limit even of modern graphics cards
when rendering a large number of segments.

4 HYBRID RENDERING OF STYLIZED LINE PRIMITIVES

In this section we describe a hybrid rendering algorithm for stylized
line primitives that exploits the CPU and GPU in an efficient way.
There are four possible bottlenecks in the design of such hybrid al-
gorithms: the CPU processing rate, the data transfer rate from CPU
to GPU, the vertex processing rate and the fill rate, i.e. the fragment
processing rate. The simple tesselation strategy stresses CPU pro-
cessing, data transfer from CPU to GPU and vertex processing. On
the otherhand it achieves very large fill rates. In applications like
ours there are a huge number of render primitives that project to a
very small area in the frame buffer, such that also relatively low fill
rates do not lead to a bottleneck. In this way the simple strategy is
quite bad for our application.

To better balance the different processing and transfer rates we
propose a strategy with slightly more complicated fragment pro-
cessing that allows to process coarser geometric approximations
which can be achieved with a much lower count of to be rendered
vertices. In this way the first three bottlenecks are significantly re-
duced. The next two sections describe the straight forward mostly
GPU based implementation of this approach. In section 4.3 we
discuss severe artifacts that arise where the segments become par-
allel to the viewing direction. We worked a lot on ways to avoid
these artifacts in the primarily GPU based approach but did not find
any approach with acceptably simple fragment processing, which
is necessary to avoid a new bottleneck in the fill rate.

The main observation leading to the solution proposed in sec-
tion 4.4 was that these artifacts arise only in a small number of seg-

Figure 4: Left: Sketch of an infinite cylinder with silhouette lines
dashed. Right: The simplified quad fails to cover the complete area
of the GC segment.

ments which can be efficiently sorted out. As the artifacts can be
cleaned up afterwards, we extended the GPU based approach with a
CPU stage that view-dependently detects the problematic segments
and corrects the artifacts by overdrawing them with tesselated ge-
ometry. The additional geometry necessary per frame was small
enough to not decrease the frame rates significantly. In this way
we could very effenciently balance the work load on CPU and GPU
exploiting the strengths of both architectures.

4.1 Splatting the Geometry

The cannonic approach to splat a segment of the discretized gener-
alized cylinder is to cover it completely with a render primitive, i.e.
a quad, and then determine the actually covered fragments and their
illumination in the fragment shader. The fragment shader would
have to solve the ray-segment intersection incrementally. Espe-
cially complicated is the ray-segment intersection where the seg-
ment ends in the circles of the vertices. This makes the fragment
shader far too complicated for an acceptable fill rate.

To simplify the splatting proceedure we exploit the fact that a
sequence of segments is splatted and that both terminating circles
of a segment are matched up with adjacent segments. At each circle
in the discretization we approximate the generalized cylinder by an
infinite cylinder, which results from extrusion of the circle along the
tangent vector. From this approximation we compute two silhoutte
points sl-l and si2 for each vertex V;. Each segment is finally covered
by a quad connecting the four silhoutte points of its two vertices.
This approach is similar to Neulanders [12] quality O paintstrokes
and Blinns Optimal Tubes [3] but gives much better result through
the use of a better shading in the fragment shader.

On the left of Figure 4 the perspective view of a half infinite
cylinder is shown. The two silhouette lines are illustrated by the
dashed bold lines. From these two lines we select the two silhouette
points that lay in the same plane as the circle of the vertex. If C;
denotes all points on the infinite cylinder and v the view point, the
silhouette points for vertex V; = (p;,;,7;) can be defined as:

sl.l"Z:{pGC,-|ﬁT(p—v):O,pi,-:p,-i,-}7 3)

where 71 is the normal vector of the cylinder at the point p.

The computation of si1 2 can be reduced to a simple two dimen-
sional problem since the relative position of the silhouette points to
the point of the main axis in the same perpendicular plane is the
same for all points of this axis. This is true because all lines on
the cylinder surface parallel to #; have the same vanishing point and
therefore can never cross (see figure 4 left), which means that if a
point s is part of the silhouette, all points s, = s +¢ - #; are silhouette
points of the infinite cylinder too.

697

698

u,

Figure 5: Left: Reduction of silhouette point calculation to 2D.
Right: Determining the silhouette points of a streamline segment.

Only if the angle between the tangent # and the view vector
ii; = p; —v becomes too small (i.e. the viewpoint lies inside the

infinite cylinder C;), no reduction to 2D is possible and si1 2 cannot
be found, which leads to problems which we address in section 4.3.

This in turn means that, as long as si1 2 exist, we can determine
the relative positions of the silhouette for the point p | on the main
axis of the cylinder, which is closest to the view point v. See the left
of Figure 5 for an illustration. The view vector to p | is denoted by
i | . Atp, we define again a two dimensional local coordinate sys-
tem X; and §; that spans the plane of the circle. The local coordinate
direction %; is chosen perpendicular to # | and the tangent direction
t,1.e.

o i “
b g x|
$; is computed orthogonal to #; and Z;:
P li X i)
P =T
2 % 3

Figure 5 shows the problem reduced to 2D. To compute the local

components si‘lf of the silhouette points sljz at p, we can apply

Pythagoras rule to find that the point m; is a distance of

away from p | and that the y—components result in

2
. ri
s}lp::l:r,wf,-7 with fi=/1— = | .
[l ||
Using this we can define two extrusion vectors

S12 e i -
e[‘ :sj —PL=Ti (mxiifi'.}’l‘): (6)

with which we can compute the silhouette points si1 and sl-2 to

12 S12
s, =p;+eé .

@)

In practice it can be observed that f; is usually near equal to one
for all segments, except for the cases where we are very close to
the surface or the angle between #; and %; becomes very small (% |
becomes very small), which means that we are in an instable region.

Due to this it is possible to ignore this term and estimate é’il 2 as
S1)2 Py
él? = 45, ®)

without any noticeable visual impact on the result but saving several
costly operations on the GPU.

The cylinder normals can also be expressed in terms of the local
12

i

AP =\/1-f2 2+ fi-9;. ©)

By transmitting the two basis vectors %; and y; as well as all
other vertex data necessary for lighting calculations to the frag-
ment shader as texture coordinates, they will automatically be in-
terpolated in a perspectively correct manner across the quad by the
graphics hardware. In addition we will also transmit =+ f; in one of
the texture coordinates fexy and interpolate it along the segment.

The calculation of si1 2 can easily be performed in the vertex
shader of the GPU in a very short time. Due to this we do not
need to perform any operations on the CPU except for transfering
data to the graphics card. A simple C-like pseudocode for rendering
a single splatted segment on the CPU looks like this :

coordinate axes £; and §;. The normals at the silhouette points s
are given as

beginQuad() ;
renderNormal (tangent [i]) ;
renderTexCoords (-1, r[il);
renderVertex(position[i]);
renderTexCoords (1, r[i]);
renderVertex(position[i]);
renderNormal (tangent [i+1]);
renderTexCoords (1, r[i+1]);
renderVertex(position[i+1]);
renderTexCoords (-1, r[i+1]1);
renderVertex(position[i+1]);

endQuad () ;

The tangent vectors are transfered as normals to the graphics card
while the 2D texture coordinates are used to denote the sign of the
silhouette point and the radius of the circle. If more information
is needed for rendering it can be transfered using additional texture
coordinates. It is possible to render longer streamlines as quadstrips
and since all data is view independant we can store the whole model
into acceleration structures, such as vertex buffer objects or display
lists, which enables us to render the complete model with a single
draw call.

4.2 Fragment processing, Halos, Texture Mapping and Shad-
OWS

The actual shading in the fragment program is similar to a standard
Phong shader, except that we need to calculate the current normal
from the two transfered vectors upfront. The per fragment normal
1 can be calculated similar to 9 by normalizing

i =/1—texog? % £texy-J; (10)

A simple extension to the proposed fragment processing is the
support for a halo. A halo is similar to a single colored silhouette
drawn around the stylized line (usually the background color) and
is used to increase the depth perception of the rendering. By adding
a second interpolation parameter fex| ranging from —1 — gz, to
1+ hgize and multiplying fexg by 1+ hgize in the vertex shader we
define a percentage of the radius of our stylized line to be a halo
region. A fragment is in the halo region if zex; is smaller than —1
or larger than 1. This means that, unlike in methods like [11] our
halo is defined in object space and not in screen space, and therefore
scales with its distance to the viewpoint.

In addition to this we can also texture the stylized lines by pro-
viding additional texture coordinates. While it would be too diffi-
cult to distort the texture in such a way that it fits the actual approx-
imated geometry and is oriented correctly, we still can use this to

Figure 6: Flipping artifact on the simple shader. Also note the miss-
ing part of the silhouette on the center streamline.

map additional data to the GC segment, like for example torsion by
translating the texture to the left or right at the sample points.

Another extension is to use the shader for shadow rendering.
Shadow volumes as well as shadow maps can be implemented using
a fragment shader which only writes depth values by not extruding
the segments with respect to the viewpoint but with respect to the
light source instead. Shadow maps are suited better for calculating
shadows in most cases though, since with shadow volumes a huge
amount of additional geometry is created (at least 2 shadow quads
per segment) and the amount of overdraw is very excessive. De-
pending on the type of data visualized, shadows can add another
layer of depth perception to the rendering as illustrated in Figure 10
on the left.

4.3 Evaluation

While the previously proposed rendering method here is extremely
fast since the segments can be rendered using quad strips and thus
only a very small amount of data is needed, it suffers from large
inaccuracies if the angle between tangent- and view vector becomes
too small. This is due to the fact that in these areas the main visible
part of a segment in the screen projection is provided by the profile
area which is not covered by the silhouette quad we calculate (see
Figure 4 on the right).

The calculation of the extrusion vector §; has a singularity once #;
and #@; are parallel or anti-parallel. Near this singularity the result-
ing extrusion vector fluctuates strongly even when only changing
one of the input vectors slightly. This manifests in a so called flip-
ping artifact, which can be seen in figure 6. The changes in view
direction are only minimal, but have a huge visual impact.

A second problem is that the depth values created by this algo-
rithm only represent the flat quad stripes and not the geometry of a
true cylinder. While this only becomes noticeable when a stylized
line intersects another object it still is a detrimental effect.

The latter problem can be partially solved for near perpendicu-
lar areas by adjusting the depth value per fragment. It is possible
to approximate a second depth value per vertex by determining the
thickness of each segment in direction of the view vector and inter-
polating between the quad depth and this second depth value in the
fragment shader using the same method used for determining the
per-fragment normal.

Using the infinite cylinder C; we can determine the intersection
point ¢; of %; with the cylinder as seen in figure 7. Using the sine
rule we can determine that

ri d

= —d = 11
sin(c) ~ sin(%) (b
Therefore we can determine the front intersection point g; as
q;=p;—U;-d. 12)

Since the depth buffer is non-linear it is not sufficient to interpolate
only between the two depth values in the fragment shader. We have
to transfer the z and w values of both the transformed p; and g¢;

Figure 7: Left: Calculating the depth value of a cylinder segment.
Right: Extrusion scheme for tessellation shader.

Figure 8: Left: Streamlines rendered as simple quads. Center and
Right: Hybrid rendering with method 1 and 2, colorized for better
visibility.

to the fragment shader and interpolate between them based on the
same interpolation values used for the normals. After that we can
calculate the depth value by dividing z by w and normalizing to
[0,1]. However, the smaller the angle between #; and ; becomes,
the more inaccurate this depth approximation becomes. Thus, a
way to deal with the singularity situations has to be found.

4.4 Hybrid Rendering

Since all visual problems arise around the area of the singularity
we need to find another method to display those problem zones.
A simple yet efficient way is to tessellate the segments as in the
brute force method only in those areas. In most of the models and
views only a small fraction of the segments lead to the problematic
case, so we still gain a huge speed advantage over using the brute
force method everywhere. This means we will render the acceler-
ated quad stripes as before in a first pass and then check for problem
areas and render tessellated geometry only there.

It is not yet possible in current state of the art graphics pro-
cessors to generate additional geometry in a shader, and rendering
the whole geometry and simply discarding unneeded segments by
transforming them behind one of the clipping planes proved to be
very inefficient, so we fell back on a software solution.

The problem areas are identified the same way as in the shader
by calculating the dot product f; between view-vector and tangent.
If |fi| > 1 — € we found a problem area and need to re-render the
segments adjacent to p;. The selection of € is dependent on the
geometry and its sampling resolution, but we found values of about
0.02 — 0.03 (corresponding to an angle of about 12-14 degrees) to
be good choices.

To make the tessellated geometry fit correctly to the segments
splatted with one quad, it is required to blend the tessellated seg-
ment over into a quad before and after the problem area, else there
might be irregularities in the shading. There are two main ap-
proaches we used here. In the first we render tessellated segments
and alpha-blended them at the start and end. This has the advan-
tage that the depth values of the completed picture is correct even
around the problematic areas but the downside is that the lighting
might look different on the cylinder due to different kind of shaders
used.

699

700

Figure 9: 32768 Phong shaded streamline segments rendered as static geometry (23.4 fps), with our method (54.8 fps) and difference image.

A second possibility is to create a tessellation shader, which is
basically an extension of the simple rendering mentioned in the last
section where we render not only one quad per segment but four,
which is similar to Neulanders quality 2 Paintstrokes (see [12]).
The non-silhouette vertices are additionally extruded with %; to ap-
proximate the real geometry. The advantage here is that we can
physically transform the vertices to meet up with the quad in the
shader without a problem and can use exactly the same normal cal-
culation method as before, but we loose continuity of the depth
buffer where the patches meet when rendering with depth correc-
tion.

Since transmitting geometry of any kind from CPU to GPU is
still a big bottleneck we can accelerate both methods by precalcu-
lating batches (for example using vertex buffer objects) of geometry
segments which we can render with a single draw call when one of
the segments of the batch is in a problem area instead of sending
each segment separately. If we find one segment in a batch where
|¢i| > € we can skip testing the other segments and draw the batch.

Important factors for performance here are the length of a batch
and the maximal tangent deviation of a batch. The maximal angle
between all tangents in a batch should be smaller than 10-15 de-
grees. This allows us to greatly reduce load on the bus between
CPU and GPU and therefore accelerating calculations by quite a
bit.

5 RESULTS & BENCHMARKS

We implemented our algorithm using OpenGL and GLSL-shader
programs. Some benchmark results for our implementation can be
found in table 1. On our GeForce FX5900 the fill rate of the shader
is only 20 percent slower than a standard Phong shader, enabling
halos takes up another portion of the fill rate. The fill rates have
been measured using NVidias nvshaderperf [10]. The static ge-
ometry used for comparison was tessellated with 8 quads per GC
segment. Segment throughput was measured on a 2x2 pixel view
port with the model shown in figure 1 in the center, which has 256
stylized lines and 145374 segments. Performance can vary depend-
ing on the ratio of segments per stylized line. In average it is about
a factor of three higher for the accelerated methods than for the ge-
ometry. The measurements denoted as DL were performed using a
display list/vertex buffer objects (the methods are equally fast), the
rates denoted with IM were performed in immediate mode (with
direct open gl draw calls for every primitive) and the rates denoted
with VA were performed with vertex arrays (excluding the time for
computing the vertex arrays).

When enabling the hybrid rendering algorithm the segment
throughput drops only slightly and is still 2.5 times faster than the
brute-force approach, while the resulting image is near indistin-
guishable from the geometry approach, and at certain places even
looks smoother than the tessellation with eight quads per segment.

Type Fill rate DL seg/s VAseg/s IM seg/s
Geometry 150.0 MP/s 1.9M 0.77M 56.5 K
Shader 120.0 MP/s 6.9M 42M 19M
+Halo 94.7 MP/s 6.0 M 4.0M 19M

Table 1: Throughput measurements. Fill rate measured with NVidias
nvshaderperf [10] software. Segments per second measured with
display lists/vertex buffer objects, vertex arrays and immediate mode
respectively on a 2x2 view port.

Rendering Type FPS
Geometry 114
Geometry + Halo 9.7
Shader 28.2
Shader with halo 23.4
Hybrid 27.0
Hybrid with halo 22.5

Table 2: Frames per second measurement of a 65536 segment toroid
model as seen in figure figure 1.

Table 2 shows benchmark results in frames per second on a scene
with the Toroid like model shown in figure 1 on the left, consisting
of 65536 stylized line segments. The halo for the geometry ap-
proach was created by rendering the segments a second time with
larger scale, inverted normals and disabled lighting.

It is interesting to note that even when rendering all segments
in immediate mode (meaning we transfer the geometry from CPU
to GPU every frame anew, enabling us to modify the geometry at
will, for example for highly dynamic data sets) we still achieve a
throughput of about 1.9 million segments per second with just the
simple shader enabled. This means that it is possible to render a
model consisting of up to about 60k streamline segments still in real
time with 30 frames per second, so we can handle dynamic models
a lot better than with pure geometry where we have to calculate a
new tessellation for every frame.

If we take a look at the size of the geometry it can be noted that
to draw a single shaded segment we need only 110 bytes of data (4
vertices, 2 tangents, 2 colors and radius/interpolator information)
compared to the 720 bytes needed to render a stripped geometry
cylinder segment. This value can be halved for most of the seg-
ments since it is possible to render them as a strip instead of single
quads.

Using our rendering technique we have moved the main stress

from CPU processing rate and data transfer between CPU and GPU
to the vertex and fragment processing on the GPU.

Figure 11: Mapping several scalar values of a vector field to streamlines. The left picture shows streamlines with velocity encoded in color
(purple to red to yellow), the integrated divergence is mapped to the radius and the flow direction is visualized by a saturation modulation (flow
is from low saturation to high saturation). The two pictures on the right use a similar encoding except that the texture encodes the rotation in

direction of the flow.

Figure 10: A basket with shadows enabled and a set of streamlines
where direction of rotation compared to the tangent is mapped to an
arrow texture with shorter arrows depicting areas of higher rotation.

6 APPLICATIONS

Our algorithm has several interesting applications, of which the ren-
dering of streamlines is one of the most important ones. Previously
streamlines were mostly rendered with real geometry like stream-
tubes or -ribbons [15], or as illuminated lines [16].

Illuminated Streamlines have the disadvantage that they don’t
perform lighting across a line, so while providing an improvement
to rendering simple lines without lighting they still tend to look
somewhat flat. This can especially be noticed for the specular il-
lumination component. Another aspect is that it is not possible to
render lines of arbitrary radius, limiting the use to thin lines. If the
visual quality of the result is important, our method provides bet-
ter results, as we are approximating real cylindrical geometry. Our
method trades rendering speed for better quality.

Our method also allows us to map more scalar values to visual
components like color, radius and texture in a more intuitive way
than it would have been possible using simple line primitives. Val-
ues like divergence or rotation of a vector field map very well to
radius and texture (as demonstrated in figure 11). In the left two
images we mapped the velocity to a color scale ranging from purple
over red to yellow. The divergence of the vector-field was integrated
along the stylized line primitives and the integral was mapped to the
radius, such that the radius increases where divergence is positive
and decreases where it is negative. The flow direction was visu-
alized by a saturation modulation of the color from low saturation
to high saturation. In the two images on the right of Figure 11
we mapped the integrated rotation to the orientation of a tangen-
tial stripe texture. For this we integrated the projection of the 3d
rotation vector onto the flow direction. If this component is zero,
one can integrate surfaces that are orthogonal to the flow-field. If
the component is not zero no surface can be integrated, which hints
at a swirl. The mapping to a rotating texture as shown in the two

images on the right of Figure 11 yields an intuitive understanding
of the tangential component of the rotation vector.

Another application of the fast rendering of stylized line primi-
tives outside of flow visualization is the rendering of huge molecu-
lar structures. Molecules often consists of a huge amount of atoms
visualized as spheres, which can be splatted as ellipsoids as pro-
posed by Gumbhold in [8], and interconnections which can be ren-
dered using our method. With this it is possible to visualize huge
molecules in real time with high visual quality. An example of this
can be seen in figure 1.

7 CONCLUSIONS

We presented a method to visualize stylized line primitives with
generalized cylinders. Our fast rendering approach is visually near
undistinguishable from a tessellation of the stylized lines. In some
cases the proposed rendering approach even looks smoother. Our
hybrid approach overcomes the problems which arise when only us-
ing flat quads to approximate the geometry. It optimizes rendering
speed by on the one hand keeping the vertex data small and on the
other hand the fragment shader simple. In this way we can achieve
high fill rates and high segment counts.

With new, more powerful GPUs coming soon it will be possible
to completely generate all needed data on the GPU, without having
to rely on the CPU, which would greatly increase the effectiveness
of our approach.

As a main application we had a look at the visualization of 3D
flows from vector- or tensor-fields with streamlines. Compared to
methods that tessellate the geometry our method is faster and more
flexible, while even allowing to easily incorporate halos. Rendering
streamlines as shaded line primitives is still faster than our method
by the order of a magnitude but delivers visually less qualitative
results, failing to provide the amount of depth perception created by
splatting real geometry. Further useful applications, like rendering
of molecular structures have been presented.

REFERENCES

[1] G. Agin and T. Bindford. Computer descriptions of curved objects.
IEEE Trans. Computers, C-25(4):439-449, 1976.

[2] Alberto S. Aguado, Eugenia Montiel, and Ed Zaluska. Modeling
generalized cylinders via fourier morphing. ACM Trans. Graph.,
18(4):293-315, 1999.

[3] James F. Blinn. Jim Blinn’s corner — optimal tubes. IEEE Computer
Graphics and Applications, 9(5):8-13, September 1989.

[4] W.F. Bronsvoort, P.R. van Nieuwenhuizen, and F.H. Post. Display of
profiled sweep objects. The Visual Computer, 5:147-157, 1989.

701

702

v/l
BYgrZie L 1=
LSS
L= 5
=L
/

£
L7
/=

. 1‘/
2L~

Figure 12: Comparing a dataset rendered with illuminated streamlines [16] on the left (flow velocity is mapped to color) to our rendering method
in the center (flow velocity also mapped to streamline thickness) and enhanced even further with a texture marking flow direction on the right.

Figure 13: A streamline with rotation mapped to a normal map
texture.

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Willem F. Bronsvoort and Fopke Klok. Ray tracing generalized cylin-
ders. ACM Trans. Graph., 4(4):291-303, 1985.

Anton Fuhrmann and Eduard Gréller. Real-time techniques for 3d
flow visualization. In VIS ’98: Proceedings of the conference on Vi-
sualization "98, pages 305-312, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

Laurent Grisoni and Damien Marchal. High performance generalized
cylinders visualization. In SMI ’03: Proceedings of the Shape Model-
ing International 2003, page 257, Washington, DC, USA, 2003. IEEE
Computer Society.

Stefan Gumbhold. Splatting illuminated ellipsoids with depth correc-
tion. In Proceedings of 8th International Fall Workshop on Vision,
Modelling and Visualization 2003, pages 245-252, nov 2003.

Stefan Gumbhold. Designing optimal curves in 2d. In Proceedings of
CEIG 2004, pages 61-76, Sevilla, Spain, July 2004.

Nvidia developer pages, 2005.

Oliver Mattausch, Thomas Theussl, Helwig Hauser, and Eduard
Groller. Strategies for interactive exploration of 3d flow using evenly-
spaced illuminated streamlines. In SCCG ’03: Proceedings of the 19th
spring conference on Computer graphics, pages 213-222, New York,
NY, USA, 2003. ACM Press.

Ivan Neulander and Michiel van de Panne. Rendering generalized
cylinders with paintstrokes. In Graphics Interface, pages 233-242,
June 1998.

F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch.
Feature extraction and visualization of flow fields. In Eurographics
2002 State-of-the-Art Reports, pages 69—100, Saarbriicken Germany,
2-6 September 2002. European Association for Computer Graphics,

[14]

[15]

[16]

The Eurographics Association.

Greg Schussman and Kwan-Liu Ma. Anisotropic volume rendering
for extremely dense, thin line data. In VIS '04: Proceedings of the con-
ference on Visualization '04, pages 107-114, Washington, DC, USA,
2004. IEEE Computer Society.

Shyh-Kuang Ueng, Christopher Sikorski, and Kwan-Liu Ma. Effi-
cient streamline, streamribbon, and streamtube constructions on un-
structured grids. IEEE Transactions on Visualization and Computer
Graphics, 2(2):100-110, 1996.

Malte Zockler, Detlev Stalling, and Hans-Christian Hege. Interactive
visualiztion of 3d-vector fields using illuminated streamlines. In /[EEE
Visualization, pages 107-113, 1996.

