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Figure 1: A sequence of poses captured from eight video recordings of a capoeira turn kick. Our algorithm delivers spatio-temporally
coherent geometry of the moving performer that captures both the time-varying surface detail as well as details in his motion very faithfully.

Abstract

This paper proposes a new marker-less approach to capturing hu-
man performances from multi-view video. Our algorithm can
jointly reconstruct spatio-temporally coherent geometry, motion
and textural surface appearance of actors that perform complex and
rapid moves. Furthermore, since our algorithm is purely mesh-
based and makes as few as possible prior assumptions about the
type of subject being tracked, it can even capture performances of
people wearing wide apparel, such as a dancer wearing a skirt. To
serve this purpose our method efficiently and effectively combines
the power of surface- and volume-based shape deformation tech-
niques with a new mesh-based analysis-through-synthesis frame-
work. This framework extracts motion constraints from video and
makes the laser-scan of the tracked subject mimic the recorded
performance. Also small-scale time-varying shape detail is re-
covered by applying model-guided multi-view stereo to refine the
model surface. Our method delivers captured performance data at
high level of detail, is highly versatile, and is applicable to many
complex types of scenes that could not be handled by alternative
marker-based or marker-free recording techniques.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis

Keywords: performance capture, marker-less scene reconstruc-
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1 Introduction

The recently released photo-realistic CGI movie Beowulf
[Paramount 2007] provides an impressive foretaste of the way how
many movies will be produced as well as displayed in the future.
In contrast to previous animation movies, the goal was not the cre-
ation of a cartoon style appearance but a photo-realistic display of
the virtual sets and actors. Today it still takes a tremendous effort to
create authentic virtual doubles of real-world actors. It remains one
of the biggest challenges to capture human performances, i.e. mo-
tion and possibly dynamic geometry of actors in the real world in
order to map them onto virtual doubles. To measure body and facial
motion, the studios resort to marker-based optical motion capture
technology. Although this delivers data of high accuracy, it is still a
stopgap. Marker-based motion capture requires a significant setup
time, expects subjects to wear unnatural skin-tight clothing with
optical beacons, and often makes necessary many hours of manual
data cleanup. It therefore does not allow for what both actors and
directors would actually prefer: To capture human performances
densely in space and time - i.e. to be able to jointly capture ac-
curate dynamic shape, motion and textural appearance of actors in
arbitrary everyday apparel.

In this paper, we therefore propose a new marker-less dense perfor-
mance capture technique. From only eight multi-view video record-
ings of a performer moving in his normal and even loose or wavy
clothing, our algorithm is able to reconstruct his motion and his
spatio-temporally coherent time-varying geometry (i.e. geometry
with constant connectivity) that captures even subtle deformation
detail. The abdication of any form of optical marking also makes
simultaneous shape and texture acquisition straightforward.

Our method achieves a high level of flexibility and versatility
by explicitly abandoning any traditional skeletal shape or motion
parametrization and by posing performance capture as deformation
capture. For scene representation we employ a detailed static laser
scan of the subject to be recorded. Performances are captured in a
multi-resolution way, i.e. first global model pose is inferred using a
lower-detail model, Sect. 5, and thereafter smaller-scale shape and
motion detail is estimated based on a high-quality model, Sect. 6.

1



To appear in the ACM SIGGRAPH conference proceedings

Global pose capture employs a new analysis-through-synthesis pro-
cedure that robustly extracts from the input footage a set of posi-
tion constraints. These are fed into an efficient physically plausi-
ble shape deformation approach, Sect. 4, in order to make the scan
mimic the motion of its real-world equivalent. After global pose
recovery in each frame, a model-guided multi-view stereo and con-
tour alignment method reconstructs finer surface detail at each time
step. Our results show that our approach can reliably reconstruct
very complex motion exhibiting speed and dynamics that would
even challenge the limits of traditional skeleton-based optical cap-
turing approaches, Sect. 7.

To summarize, this paper presents a new video-based performance
capture method

• that passively reconstructs spatio-temporally coherent shape,
motion and texture of actors at high quality;

• that draws its strength from an effective combination of new
skeleton-less shape deformation methods, a new analysis-
through-synthesis framework for pose recovery, and a new
model-guided multi-view stereo approach for shape refine-
ment;

• and that exceeds capabilities of many previous capture tech-
niques by allowing the user to record people wearing loose
apparel and people performing fast and complex motion.

2 Related Work

Previous related work has largely focused on capturing sub-
elements of the sophisticated scene representation that we are able
to reconstruct.

Marker-based optical motion capture systems are the workhorses
in many game and movie production companies for measuring mo-
tion of real performers [Menache andManache 1999]. Despite their
high accuracy, their very restrictive capturing conditions, that of-
ten require the subjects to wear skin-tight body suits and reflective
markings, make it infeasible to capture shape and texture. Park
et al. [2006] try to overcome this limitation by using several hun-
dred markers to extract a model of human skin deformation. While
their animation results are very convincing, manual mark-up and
data cleanup times can be tremendous in such a setting and gener-
alization to normally dressed subjects is difficult. In contrast, our
marker-free algorithm requires a lot less setup time and enables si-
multaneous capture of shape, motion and texture of people wearing
everyday apparel.

Marker-less motion capture approaches are designed to overcome
some restrictions of marker-based techniques and enable perfor-
mance recording without optical scene modification [Moeslund
et al. 2006; Poppe 2007]. Although they are more flexible than in-
trusive methods, it remains difficult for them to achieve the same
level of accuracy and the same application range. Furthermore,
since most approaches employ kinematic body models, it is hard
for them to capture motion, let alone detailed shape, of people
in loose everyday apparel. Some methods, such as [Sand et al.
2003] and [Balan et al. 2007] try to capture more detailed body
deformations in addition to skeletal joint parameters by adapting
the models closer to the observed silhouettes, or by using captured
range scan data [Allen et al. 2002]. But both algorithms require the
subjects to wear tight clothes. Only few approaches, such as the
work by [Rosenhahn et al. 2006], aim at capturing humans wearing
more general attire, e.g. by jointly relying on kinematic body and
cloth models. Unfortunately, these methods typically require hand-
crafting of shape and dynamics for each individual piece of apparel,

and they focus on joint parameter estimation under occlusion rather
than accurate geometry capture.

Other related work explicitly reconstructs highly-accurate geome-
try of moving cloth from video [Scholz et al. 2005; White et al.
2007]. However, these methods require visual interference with the
scene in the form of specially tailored color patterns on each piece
of garment which renders simultaneous shape and texture acquisi-
tion infeasible.

A slightly more focused but related concept of performance cap-
ture is put forward by 3D video methods which aim at rendering
the appearance of reconstructed real-world scenes from new syn-
thetic camera views never seen by any real camera. Early shape-
from-silhouette methods reconstruct rather coarse approximate 3D
video geometry by intersecting multi-view silhouette cones [Ma-
tusik et al. 2000; Gross et al. 2003]. Despite their computational
efficiency, the moderate quality of the textured coarse scene re-
constructions often falls short of production standards in the movie
and game industry. To boost 3D video quality, researchers experi-
mented with image-based methods [Vedula et al. 2005], multi-view
stereo [Zitnick et al. 2004], multi-view stereo with active illumina-
tion [Waschbüsch et al. 2005], or model-based free-viewpoint video
capture [Carranza et al. 2003]. In contrast to our approach, the first
three methods do not deliver spatio-temporally coherent geometry
or 360 degree shape models, which are both essential prerequisites
for animation post-processing. At the same time, previous kine-
matic model-based 3D video methods were unable to capture per-
formers in general clothing. [Starck and Hilton 2007] propose a
combination of stereo and shape-from-silhouette to reconstruct per-
formances from video. They also propose a spherical reparameter-
ization to establish spatio-temporal coherence during postprocess-
ing. However, since their method is based on shape-from-silhouette
models which often change topology due to incorrect reconstruc-
tion, establishing spatio-temporal coherence may be error-prone. In
contrast, our prior with known connectivity handles such situations
more gracefully.

Data-driven 3D video methods synthesize novel perspectives by a
pixel-wise blending of densely sampled input viewpoints [Wilburn
et al. 2005]. While even renderings under new lighting can be pro-
duced at high fidelity [Einarsson et al. 2006], the complex acquisi-
tion apparatus requiring hundreds of densely spaced cameras makes
practical applications often difficult. Further on, the lack of geom-
etry makes subsequent editing a major challenge.

Recently, new animation design [Botsch and Sorkine 2008], ani-
mation editing [Xu et al. 2007], deformation transfer [Sumner and
Popović 2004] and animation capture methods [Bickel et al. 2007]
have been proposed that are no longer based on skeletal shape and
motion parametrizations but rely on surface models and general
shape deformation approaches. The explicit abandonment of kine-
matic parametrizations makes performance capture a much harder
problem, but bears the striking advantage that it enables capturing
of both rigidly and non-rigidly deforming surfaces with the same
underlying technology.

Along this line of thinking, the approaches by [de Aguiar et al.
2007a] and [de Aguiar et al. 2007b] enable mesh-based motion
capture from video. At a first look, both methods also employ
laser-scanned models and a more basic shape deformation frame-
work. But our algorithm greatly exceeds their methods’ capabilities
in many ways. First, our new analysis-through-synthesis tracking
framework enables capturing of motion that shows a level of com-
plexity and speed which would have been impossible to recover
with previous flow-based or flow- and feature-based methods. Sec-
ondly, we propose a volumetric deformation technique that greatly
increases robustness of pose recovery. Finally, in contrast to previ-
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ous methods, our algorithm explicitly recovers small-scale dynamic
surface detail by applying model-guided multi-view stereo.

Related to our approach are also recent animation reconstruction
methods that jointly perform model generation and deformation
capture from scanner data [Wand et al. 2007]. However, their prob-
lem setting is different and computationally very challenging which
makes it hard for them to generate the visual quality that we achieve
by employing a prior model. The approaches proposed in [Stoll
et al. 2006] and [Shinya 2004] are able to deform mesh-models
into active scanner data or visual hulls, respectively. Unfortunately,
neither of these methods has shown to match our method’s robust-
ness, or the quality and detail of shape and motion data which our
approach produces from video only.

3 Video-based Performance Capture

Prior to video-recording human performances we take a full-body
laser scan of the subject in its current apparel by means of a Vitus
SmartTM laser scanner. After scanning, the subject immediately
moves to the adjacent multi-view recording area. Our multi-view
capturing apparatus features K = 8 synchronized geometrically
and photometrically calibrated video cameras running at 24 fps and
providing 1004x1004 pixels frame resolution. The cameras are
placed in an approximately circular arrangement around the cen-
ter of the scene (see video for visualization of input). As part of
pre-processing color-based background subtraction is applied to all
video footage to yield silhouette images of the captured performers.

Once all of the data has been captured, our automatic performance
reconstruction pipeline commences which only requires a minimum
of manual interaction during pre-processing. To obtain our compu-
tational model of shape and motion, we first transform the raw scan
into a high-quality surface mesh Ttri = (Vtri,Ttri) with ns ver-
tices Vtri = {v1 . . .vns} and ms triangles Ttri = {t1 . . . tms}
by employing the method of [Kazhdan et al. 2006] (see Fig. 2(l) ).
Additionally, we create a coarser tetrahedral version of the surface
scan Ttet = (Vtet,Ttet) (comprising of nt vertices Vtet and mt

tetrahedrons Ttet) by applying a quadric error decimation and a
subsequent constrained Delaunay tetrahedralization (see Fig. 2(r) ).
Typically, Ttri contains between 30000 and 40000 triangles, and
the corresponding tet-version between 5000 and 6000 tetrahedrons.
Both models are automatically registered to the first pose of the ac-
tor in the input footage by means of a procedure based on iterative
closest points (ICP). Since we asked the actor to strike in the first
frame of video a pose similar to the one that she/he was scanned
in, pose initialization is greatly simplified, as the model is already
close to the target pose.

Our capture method explicitly abandons a skeletal motion
parametrization and resorts to a deformable model as scene repre-
sentation. Thereby, we are facing a much harder tracking problem,
but gain an intriguing advantage: we are now able to track non-
rigidly deforming surfaces (like wide clothing) in the same way
as rigidly deforming models and do not require prior assumptions
about material distributions or the segmentation of a model.

The first core algorithmic ingredient of mesh-based performance
capture is a fast and reliable shape deformation framework that ex-
presses the deformation of the whole model based on a few point
handles, Sect. 4. We capture performances in a multi-resolution
way to increase reliability. First, an analysis-through-synthesis
method based on image and silhouette cues estimates the global
pose of an actor at each frame on the basis of the lower-detail tetra-
hedral input model, Sect. 5. The sequence of processing steps is
designed to enable reliable convergence to plausible poses despite
the highly multi-modal solution space of optimization-based mesh

Figure 2: A surface scanTtri of an actress (l) and the correspond-
ing tetrahedral mesh Ttet in an exploded view (r).

deformation. Once global poses are found, the high-frequency as-
pect of performances is captured. For instance, the motion of folds
in a skirt is recovered in this step. To this end the global poses are
transferred to the high-detail surface scan, and surface shape is re-
fined by enforcing contour alignment and performing model-guided
stereo, Sect. 6.

The output of our method is a dense representation of the perfor-
mance in both space and time. It comprises of accurately deformed
spatio-temporally coherent geometry that nicely captures the liveli-
ness, motion and shape detail of the original input.

4 A Deformation Toolbox

Our performance capture technique uses two variants of Laplacian
shape editing. For low-frequency tracking, we use an iterative vol-
umetric Laplacian deformation algorithm which is based on our
tetrahedral mesh Ttet, Sect. 4.1. This method enables us to infer
rotations from positional constraints and also implicitly encodes
prior knowledge about shape properties that we want to preserve,
such as local cross-sectional areas. For recovery of high-frequency
surface details, we transfer the captured pose of Ttet to the high-
resolution surface scan, Sect. 4.2. Being already roughly in the cor-
rect pose, we can resort to a simpler non-iterative variant of surface-
based Laplacian deformation to infer shape detail from silhouette
and stereo constraints, Sect. 4.3.

4.1 Volumetric Deformation

It is our goal to deform the tetrahedral mesh Ttet as naturally as pos-
sible under the influence of a set of position constraints vj ≈ qj ,
j ∈ {1, . . . , nc}. To this end, we iterate a linear Laplacian defor-
mation step and a subsequent update step, which compensates the
(mainly rotational) errors introduced by the nature of the linear de-
formation. This procedure minimizes the amount of non-rigid de-
formation each tetrahedron undergoes, and thus exhibits qualities
of an elastic deformation. Our algorithm is related to the approach
by [Sorkine and Alexa 2007]. However, we decide to use a tetra-
hedral construction rather than their triangle mesh construction, as
this allows us to implicitly preserve certain shape properties, such
as cross-sectional areas, after deformation. The latter greatly in-
creases tracking robustness since non-plausible model poses (e.g.
due to local flattening) are far less likely.

Our deformation technique is based on solving the tetrahedral
Laplacian system Lv = δ with

L = G
T
DG , (1)

and
δ = G

T
Dg , (2)
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where G is the discrete gradient operator matrix for the mesh, D
is a 4mt × 4mt diagonal matrix containing the tetrahedra’s vol-
umes, and g is the set of tetrahedron gradients, each being calcu-
lated as gj = Gjpj (see [Botsch and Sorkine 2008] for more
detail). Here, pj is a matrix containing the vertex coordinates of
tetrahedron tj . The constraints qj can be factorized into the matrix
L by eliminating the corresponding rows and columns in the matrix
and incorporating the values into the right-hand side δ.

We now iterate the following steps :

• Linear Laplacian deformation: By solving the above system

we obtain a set of new vertex positionsV
′

tet = {v
′

1 . . .v
′

nt
}.

Due to the linear formulation, this deformed model exhibits
artifacts common to all simple Laplacian techniques, i.e. the
local elements do not rotate under constraints but rather sim-
ply scale and shear to adjust to the desired pose.

• Rotation extraction: We now extract a transformation matrix
Ti for each tetrahedron which brings ti into configuration
t′i. These transformations can be further split up into a rigid
part Ri and a non-rigid part Si using polar decomposition.
Keeping only the rotational component removes the non-rigid
influences of the linear deformation step from the local ele-
ments.

• Differential update: We finally update the right hand side δ
using Eq. (2) by applying the rotationsRi to the gradients of
the tetrahedron.

Iterating this procedure minimizes the amount of non-rigid defor-
mation Si remaining in each tetrahedron. Henceforth we will refer
to this deformation energy as ED . While our subsequent track-
ing steps would work with any physically plausible deformation or
simulation method such as [Botsch et al. 2007; Müller et al. 2002],
our technique has the advantages of being extremely fast, of being
very easy to implement, and of producing plausible results even if
material properties are unknown.

4.2 Deformation Transfer

To transfer a pose from Ttet to Ttri, we express the position of
each vertex vi in Ttri as a linear combination of vertices in Ttet.
These coefficients ci are calculated for the rest pose and can be
used afterwards to update the pose of the triangle mesh.

We generate the linear coefficients ci by finding the subset Tr(vi)
of all tetrahedra from Ttet that lie within a local spherical neigh-
borhood of radius r (in all our cases r was set to 5% of the mesh’s
bounding box diagonal) and contain a boundary face with a face
normal similar to that of vi. Subsequently, we calculate the (not
necessarily positive) barycentric coordinate coefficients ci(j) of the
vertex with respect to all tj ∈ Tr(vi) and combine them into one
larger coefficient vector ci as

ci =

P

tj∈Tr(vi)
ci(j)φ(vi, tj)

P

tj∈Tr(vi)
φ(vi, tj)

.

φ(vi, tj) is a compactly supported radial basis function with re-
spect to the distance of vi to the barycenter of tetrahedron tj . This
weighted averaging ensures that each point is represented by several
tetrahedra and thus the deformation transfer from tetrahedral mesh
to triangle mesh will be smooth. The coefficients for all vertices of
Ttri are combined into a matrix B. Thanks to the smooth partition
of unity definition and the local support of our parametrization, we
can quickly compute the mesh in its transferred pose V ′

tri by mul-
tiplying the current vertex positions of the current tetrahedral mesh
Vtet withB.

4.3 Surface-based Deformation

Our surface-based deformation relies on a simple least-squares
Laplacian system as it has been widely used in recent years [Botsch
and Sorkine 2008]. Given our triangle mesh Ttri we apply a dis-
crete least-squares Laplacian using cotangent weights to deform
the surface under the influence of a set of position constraints
vj ≈ qj ,j ∈ {1, . . . , nc}. This can be achieved by minimizing
the energy

argmin
v

˘

‖Lv − δ‖2 + ‖Cv − q‖2¯

. (3)

Here, L is the cotangent Laplacian matrix, δ are the differen-
tial coordinates, and C is a diagonal matrix with non-zero entries
Cj,j = wj only for constrained vertices vj (wherewj is the weight
of the additional entry). This formulation uses the Laplacian as a
regularization term for the deformation defined by our constraints.

5 Capturing the Global Model Pose

Our first step aims at recovering for each time step of video a global
pose of the tetrahedral input model that matches the pose of the real
actor. In a nutshell, our global pose extraction method computes
deformation constraints from each pair of subsequent multi-view
input video frames at times t and t+1. It then applies the volumetric
shape deformation procedure to modify the pose of Ttet at time t
(that was found previously) until it aligns with the input data at time
t + 1. In order to converge to a plausible pose under this highly
multi-modal goodness-of-fit criterion, it is essential that we extract
the right types of features from the images in the right sequence and
apply the resulting deformation constraints in the correct order.

To serve this purpose, our pose recovery process begins with the
extraction of 3D vertex displacements from reliable image features
which brings our model close to its final pose even if scene motion
is rapid, Sect. 5.1. The distribution of 3D features on the model
surface is dependent on scene structure, e.g. texture, and can, in
general, be non-uniform or sparse. Therefore, the resulting pose
may not be entirely correct. Furthermore, potential outliers in the
correspondences make additional pose update steps unavoidable.
We therefore subsequently resort to two additional steps that ex-
ploit silhouette data to fully recover the global pose. The first step
refines the shape of the outer model contours until they match the
multi-view input silhouette boundaries, Sect. 5.2. The second step
optimizes 3D displacements of key vertex handles until optimal
multi-view silhouette overlap is reached, Sect. 5.3. Conveniently,
the multi-view silhouette overlap can be quickly computed as an
XOR operation on the GPU.

We gain further tracking robustness by subdividing the surface of
the volume model into a setR of approximately 100-200 regions of
similar size during pre-processing [Yamauchi et al. 2005]. Rather
than inferring displacements for each vertex, we determine repre-
sentative displacements for each region as explained in the follow-
ing sections.

5.1 Pose Initialization from Image Features

Given two sets of multi-view video frames I1(t), . . . , Ik(t) and
I1(t + 1), . . . , Ik(t + 1) from subsequent time steps, our first pro-
cessing step extracts SIFT features in each frame [Lowe 1999] (see
Fig. 3). This yields for each camera view k and either time step

a list of ℓ(k) = 1, . . . , Lk 2D feature locations u
ℓ(k)
k,t along with

their SIFT feature descriptors dd
ℓ(k)
k,t – henceforth we refer to each

such list as LDk,t. SIFT features are our descriptors of choice, as
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Figure 3: 3D correspondences are extracted from corresponding
SIFT features in respective input camera views at t and t+1. These
3D correspondences, two of them illustrated by lines, are used to
deform the model into a first pose estimate for t + 1.

they are largely invariant under illumination and out-of-plane rota-
tion and enable reliable correspondence finding even if the scene
motion is fast.

Let Ttet(t) be the pose of Ttet at time t. To transform feature data
into deformation constraints for vertices of Ttet(t), we first need
to pair image features from time t with vertices in the model. We
therefore first associate each vi of Ttet(t)with that descriptor ddi

k,t

from each Ik(t) that is located closest to the projected location of
vi in this respective camera. We perform this computation for all
camera views and discard a feature association if vi is not visible
from k or if the distance between the projected position of vi and
the image position of ddi

k,t is too large. This way, we obtain a set

of associations A(vi, t) = {dd
j1
1,t, · · · , dd

jK
K,t} for a subset of ver-

tices that contains at most one feature from each camera. Lastly, we
check the consistency of each A(vi, t) by comparing the pseudo-
intersection point pINT

i of the reprojected rays passing through

u
j1
1,t, . . . , u

jK
K,t to the 3D position of vi in model pose Ttet(t). If

the distance ‖vi − pINT
i ‖ is greater than a threshold EDIST the

original feature association is considered implausible and vi is re-
moved from the candidate list for deformation handles.

The next step is to establish temporal correspondence, i.e. to find
for each vertex vi with feature associationA(vi, t) the correspond-
ing association A(vi, t + 1) with features from the next time step.

To this end, we preliminarily find for each dd
j

k,t ∈ A(vi, t) a de-

scriptor dd
f

k,t+1 ∈ LDk,t+1 by means of nearest neighbor distance

matching in the descriptor values, and add dd
f

k,t+1 to A(vi, t + 1).
In practice, this initial assignment is likely to contain outliers, and
therefore we compute the final set of temporal correspondences by
means of robust spectral matching [Leordeanu and Hebert 2005].
This method efficiently bypasses the combinatorial complexity of
the correspondence problem by formulating it in closed form as a
spectral analysis problem on a graph adjacency matrix. Incorrect
matches are eliminated by searching for an assignment in which
both the feature descriptor values across time are consistent, and
pairwise feature distances across time are preserved. Fig. 3 illus-
trates a subset of associations found for two camera views. From
the final set of associations A(vi, t + 1) we compute the predicted
3D target position pEST

i of vertex vi again as the virtual intersec-
tion point of reprojected image rays through the 2D feature posi-
tions.

Each vertex vi for which a new estimated position was found is a
candidate for a deformation handle. However, we do not straight-
forwardly apply all handles to move directly to the new target pose.
We rather propose the following step-wise procedure which, in
practice, is less likely to converge to implausible model configu-

(a) (b)

Figure 4: (a) Color-coded distance field from the image silhouette
contour shown for one camera view. (b) Rim vertices with respect
to one camera view marked in red on the 3D model.

rations: We resort to the set of regions R on the surface of the
tet-mesh (as described above) and find for each region ri ∈ R one
best handle from all candidate handles that lie in ri. The best han-
dle vertex vi is the one whose local normal is most collinear with
the difference vector pEST

i −vi. If no handle is found for a region,
we constrain the center of that region to its original 3D position in
Ttet(t). This prevents unconstrained surface areas from arbitrary
drifting. For each region handle, we define a new intermediate tar-

get position as q′
i = vi +

pEST
i −vi

‖pEST
i

−vi‖
. Typically, we obtain posi-

tion constraints q′
i for around 70% to 90% of the surface regionsR

that are then used to change the pose of the model. This step-wise
deformation is repeated until the multi-view silhouette overlap er-
ror SIL(Ttet, t + 1) cannot be improved further. The overlap error
is computed as the XOR between input and model silhouette in all
camera views.

We would like to remark that we do not require tracking of features
across the entire sequence which greatly contributes to the reliabil-
ity of our method. The output of this step is a feature-based pose
estimate T F

tet(t + 1).

5.2 Refining the Pose using Silhouette Rims

In image regions with sparse or low-frequency textures, only few
SIFT features may have been found. In consequence, the pose of
T F

tet(t + 1) may not be correct in all parts. We therefore resort to
another constraint that is independent of image texture and has the
potential to correct for such misalignments. To this end, we de-
rive additional deformation constraints for a subset of vertices on
T F

tet(t+1) that we call rim verticesVRIM (t+1), see Fig. 4(b). In
order to find the elements ofVRIM (t + 1), we first calculate con-
tour images Ck,t+1 using the rendered volumetric model silhou-
ettes. A vertex vi is considered a rim vertex if it projects into close
vicinity of the silhouette contour in (at least) one of the Ck,t+1, and
if the normal of vi is perpendicular to the viewing direction of the
camera k.

For each element vi ∈ VRIM (t + 1) a 3D displacement is com-
puted by analyzing the projected location uk,t+1 of the vertex into
the camera k that originally defined its rim status. The value of
the distance field from the contour at the projected location defines
the total displacement length in vertex normal direction, Fig. 4(a).
This way, we obtain deformation constraints for rim vertices which
we apply in the same step-wise deformation procedure that was al-
ready used in Sect. 5.1. The result is a new model configuration
T R

tet(t + 1) in which the projections of the outer model contours
more closely match the input silhouette boundaries.
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5.3 Optimizing Key Handle Positions

In the majority of cases, the pose of the model in T R
tet(t + 1) is

already close to a good match. However, in particular if the scene
motion was fast or the initial pose estimate from SIFT was not en-
tirely correct, residual pose errors remain. We therefore perform
an additional optimization step that corrects such residual errors by
globally optimizing the positions of a subset of deformation handles
until good silhouette overlap is reached.

Instead of optimizing the position of all 1000−2000 vertices of the
volumetric model, we only optimize the position of typically 15-
25 key vertices Vk ⊂ Vtet until the tetrahedral deformation pro-
duces optimal silhouette overlap. Tracking robustness is increased
by designing our energy function such that surface distances be-
tween key handles are preserved, and pose configurations with low
distortion energy ED are preferred. We ask the user to specify key
vertices manually, a procedure that has to be done only once for
every model. Typically, key vertices are marked close to anatomi-
cal joints, and in case of model parts representing loose clothing, a
simple uniform handle distribution produces good results.

Given all key vertex positions vi ∈ Vk in the current model pose
T R

tet(t + 1), we optimize for their new positions pi by minimizing
the following energy functional:

E(Vk) = wS ·SIL(Ttet(Vk), t+1)+wD ·ED +wC ·EC . (4)

Here, SIL(Ttet(Vk), t + 1) denotes the multi-view silhouette
overlap error of the tet-mesh in its current deformed poseTtet(Vk)
which is defined by the new positions of the Vk. ED is the defor-
mation energy as defined in Sect. 4.1. Implicitly we reason that low
energy configurations are more plausible, see Sect. 4.1. EC pe-
nalizes changes in distance between neighboring key vertices. All
three terms are normalized and the weights wS , wD , and wC are
chosen in a way such that SIL(Ttet(Vk), t + 1) is the dominant
term. We use a Quasi-Newton LBFGS-B method to minimize Eq.
(4) [Byrd et al. 1995].

Fig. 5 illustrates the improvements in the new output pose
T O

tet(t + 1) that are achieved through key handle optimization.

5.4 Practical Considerations

The above sequence of steps is performed for each pair of subse-
quent time instants. Surface detail capture, Sect. 6, commences
after the global poses for all frames were found.

Typically the rim step described in Sect. 5.2 is performed once more
after the last silhouette optimization steps which, in some cases,
leads to a better model alignment. We also perform a consistency
check on the output of low frequency pose capture to correct po-
tential self-intersections. To this end, for every vertex lying inside

(a) (b) (c) (d)

Figure 5: Model (a) and silhouette overlap (b) after the rim step;
slight pose inaccuracies in the leg and the arms appear black in
the silhouette overlap image. (c),(d) After key vertex optimization,
these pose inaccuracies are removed and the model strikes a correct
pose.

another tetrahedron, we use the volumetric deformation method to
displace this vertex in outward direction along its normal until the
intersection is resolved.

6 Capturing Surface Detail

Once global pose has been recovered for each frame the pose se-
quence of Ttet is mapped to Ttri, Sect. 4.2. In the following, the
process of shape detail capture at a single time step is explained.

6.1 Adaptation along Silhouette Contours

In a first step we adapt the silhouette rims of our fine mesh to better
match the input silhouette contours. As we are now working on a
surface mesh which is already very close to the correct configura-
tion, we can allow a much broader and less smooth range of defor-
mations than in the volumetric case, and thereby bring the model
in much closer alignment with the input data. At the same time we
have to be more careful in selecting our constraints, since noise in
the data now has more deteriorating influence.

Similar to Sect. 5.2 we calculate rim vertices, however on the high-
resolution surface mesh, Fig. 6(a). For each rim vertex the closest
2D point on the silhouette boundary is found in the camera view
that defines its rim status. Now we check if the image gradient
at the input silhouette point has a similar orientation to the image
gradient in the reprojected model contour image. If this is the case,
the back-projected input contour point defines the target position for
the rim vertex. If the distance between back-projection and original
position is smaller than threshold ERIM we add it as constraint to
Eq. (3). Here we use a low weight (between 0.25 and 0.5 depending
on the quality of the segmentation) for the rim constraint points.
This has a regularizing and damping effect on the deformation that
minimizes implausible shape adaptation in the presence of noise.
After processing all vertices, we solve for the new surface. This
rim projection and deformation step is iterated up to 20 times or
until silhouette overlap can not be improved further.

6.2 Model-guided Multi-view Stereo

Although the silhouette rims only provide reliable constraints on
outer boundaries, they are usually evenly distributed on the surface.
Hence, the deformation method in general nicely adapts the shape
of the whole model also in areas which don’t project on image con-
tours. Unless the surface of the actor has a complicated shape with
many concavities, the result of rim adaptation is already a realistic
representation of the correct shape.

However, in order to recover shape detail of model regions that do
not project to silhouette boundaries, such as folds and concavities
in a skirt, we resort to photo-consistency information. To serve this
purpose, we derive additional deformation constraints by applying
the multi-view stereo method proposed by [Goesele et al. 2006].
Since our model is already close to the correct surface, we can ini-
tialize the stereo optimization from the current surface estimate and
constrain the correlation search to 3D points that are at most±2 cm
away from Ttri.

As we have far less viewpoints of our subject than Goesele et al.
and our actors can wear apparel with little texture, the resulting
depth maps (one for each input view) are often sparse and noisy.
Nonetheless, they provide important additional cues about the ob-
ject’s shape. We merge the depth maps produced by stereo into a
single point cloud P , Fig. 6(b), and thereafter project points from
Vtri onto P using a method similar to [Stoll et al. 2006]. These
projected points provide additional position constraints that we can
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(a) (b) (c) (d) (e)

Figure 6: Capturing small-scale surface detail: (a) First, deformation constraints from silhouette contours, shown as red arrows, are
estimated. (b) Additional deformation handles are extracted from a 3D point cloud that was computed via model-guided multi-view stereo.
(c) Together, both sets of constraints deform the surface scan to a highly accurate pose. – Evaluation: (d) per-frame silhouette overlap in
per cent after global pose estimation (blue) and after surface detail reconstruction (green). (e) Blended overlay between an input image and
the reconstructed model showing the almost perfect alignment of our result.

use in conjunction with the rim vertices in the surface-based de-
formation framework, Eq. (3). Given the uncertainty in the data,
we solve the Laplace system with lower weights for the stereo con-
straints.

7 Results and Applications

Our test data were recorded in our acquisition setup described in
Sect. 3 and comprise of 12 sequences that show four different ac-
tors and that feature between 200 and 600 frames each. To show the
large application range of our algorithm, the captured performers
wore a wide range of different apparel, ranging from tight to loose,
and made of fabrics with prominent texture as well as plain colors
only. Also, the recovered set of motions ranges from simple walks,
over different dance styles, to fast capoeira sequences. As the im-
ages in Figs. 1,7 and 8, as well as the results in the accompanying
video demonstrate, our algorithm faithfully reconstructs this wide
spectrum of scenes. We would also like to note that, although we
focused on human performers, our algorithm would work equally
well for animals provided that a laser scan can be acquired.

Fig. 1 shows several captured poses of a very rapid capoeira se-
quence in which the actor performs a series of turn kicks. Despite
the fact that in our 24 fps recordings the actor rotates by more than
25 degrees in-between some subsequent frames, both shape and
motion are reconstructed at high fidelity. The resulting animation
even shows deformation details such as the waving of the trouser
legs (see video). Furthermore, even with the plain white clothing
that the actor wears in the input and which exhibits only few trace-
able SIFT features, our method performs reliably as it can capitalize
on rims and silhouettes as additional sources of information. Com-
paring a single moment from the kick to an input frame confirms
the high quality of our reconstruction, Fig. 7(b) (Note that input
and virtual camera views differ slightly).

The video also shows the captured capoeira sequence with a static
checkerboard texture. This result demonstrates that temporal alias-
ing, such as tangential surface drift of vertex positions, is almost
not noticeable, and that the overall quality of the meshes remains
highly stable.

In Fig. 7(a) we show one pose from a captured jazz dance per-
formance. As the comparison to the input in image and video
shows, we are able to capture this fast and fluent motion. In ad-
dition, we can also reconstruct the many poses with complicated
self-occlusions, such as the inter-twisted arm-motion in front of the
torso, like in Fig. 7(a).

Fig. 8 shows one of the main strengths of our method, namely its

ability to capture the full time-varying shape of a dancing girl wear-
ing a skirt. Even though the skirt is of largely uniform color, our
results capture the natural waving and lifelike dynamics of the fab-
ric (see also the video). In all frames, the overall body posture, and
also the folds of the skirt were recovered nicely without the user
specifying a segmentation of the model beforehand. We would also
like to note that in these skirt sequences (one more in the video) the
benefits of the stereo step in recovering concavities are most appar-
ent. In the other test scenes, the effects are less pronounced and we
therefore deactivated the stereo step (Sect. 6.2) there to reduce com-
putation time. The jitter in the hands that is slightly visible in some
of the skirt sequences is due to the fact that the person moves with
an opened hand but the scan was taken with hands forming a fist.
In general, we also smooth the final sequence of vertex positions to
remove any remaining temporal noise.

Apart from the scenes shown in the result images, the video con-
tains three more capoeira sequences, two more dance sequences,
two more walking sequences and one additional skirt sequence.

7.1 Validation and Discussion

Table 1 gives detailed average timings for each individual step in
our algorithm. These timings were obtained with highly unopti-
mized single-threaded code running on an Intel Core Duo T2500
Laptop with 2.0 GHz. We see plenty of room for implementation
improvement, and anticipate that parallelization can lead to a sig-
nificant run time reduction.

So far, we have visually shown the high capture quality, as well as
the large application range and versatility of our approach. To for-
mally validate the accuracy of our method, we have compared the
silhouette overlap of our tracked output models with the segmented
input frames. We use this criterion since, to our knowledge, there
is no gold-standard alternative capturing approach that would pro-
vide us with accurate time-varying 3D data. The re-projections of
our final results typically overlap with over 85% of the input sil-
houette pixels, already after global pose capture only (blue curve in
Fig. 6(d)). Surface detail capture further improves this overlap to
more than 90% as shown by the green curve. Please note that this
measure is slightly negatively biased by errors in foreground seg-
mentation in some frames that appear as erroneous silhouette pix-
els. Visual inspection of the silhouette overlap therefore confirms
the almost perfect alignment of model and actual person silhouette.
Fig. 6(e) shows a blended overlay between the rendered model and
an input frame which proves this point.

Our algorithm robustly handles even noisy input, e.g. due to typ-
ically observed segmentation errors in our color-based segmenta-
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(a)

(b)

Figure 7: (a) Jazz dance posture with reliably captured inter-
twisted arm motion. (b) One moment from a very fast capoeira
turn kick (Input and virtual viewpoints differ minimally).

tion (see video). All 12 input sequences were reconstructed fully-
automatically after only minimal initial user input. As part of pre-
processing, the user marks the head and foot regions of each model
to exclude them from surface detail capture. Even slightest silhou-
ette errors in these regions (in particular due to shadows on the floor
and black hair color) would otherwise cause unnatural deforma-
tions. Furthermore, for each model the user once marks at most 25
deformation handles needed for the key handle optimization step,
Sect. 5.3.

In individual frames of two out of three capoeira turn kick se-
quences (11 out of around 1000 frames), as well as in one frame
of each of the skirt sequences (2 frames from 850 frames), the out-
put of global pose recovery showed slight misalignments in one
of the limbs. Please note that, despite these isolated pose errors,
the method always recovers immediately and tracks the whole se-
quence without drifting – this means the algorithm can run with-
out supervision and the results can be checked afterwards. All ob-
served pose misalignments were exclusively due to oversized sil-
houette areas because of either motion blur or strong shadows on
the floor. Both of this could have been prevented by better adjust-
ment of lighting and shutter speed, and more advanced segmenta-
tion schemes. In either case of global pose misalignment, at most
two deformation handle positions had to be slightly adjusted by the
user. At none of the over 3500 input frames we processed in to-
tal, it was necessary to manually correct the output of surface detail
capture (Sect. 6).

Step Time

SIFT step (Sect. 5.1) ∼34s
Global rim step (Sect. 5.2) ∼145s

Key handle optimization (Sect. 5.3) ∼270s
Contour-based refinement (Sect. 6.1) ∼27s
Stereo, 340 × 340 depth maps (Sect. 6.2) ∼132s

Table 1: Average run times per frame for individual steps.

For comparison, we implemented two related approaches from the
literature. The method by [de Aguiar et al. 2007a] uses surface-
based deformation and optical flow to track a deformable mesh
from multi-view video. As admitted by the authors, optical flow
fails for fast motions like our capoeira kicks, which makes track-
ing with their approach infeasible. In contrast, our volumetric de-
formation framework, in combination with the multi-cue analysis-
through-synthesis approach, captures this footage reliably. The
method proposed in [de Aguiar et al. 2007b] solves the slightly dif-
ferent problem of capturing continuous 3D feature trajectories from
multi-view video without 3D scene geometry. However, as shown
in their paper, the trajectories can be employed to deform a surface
scan to move like the actor in video. In our experiments we found
that it is hard for their method to maintain uninterrupted trajectories
if the person moves sometimes quickly, turns a lot, or strikes poses
with complex self-intersections. In contrast, our method handles
these situations robustly. Furthermore, as opposed to both of these
methods, we perform a stereo-based refinement step that improves
contour alignment and that estimates true time-varying surface de-
tail and concavities which greatly contribute to the naturalness of
the final result.

Despite our method’s large application range, there are a few limi-
tations to be considered. Our current silhouette rim matching may
produce erroneous deformations in case the topological structure of
the input silhouette is too different from the reprojected model sil-
houette. However, in none of our test scenes this turned out to be
an issue. In future, we plan to investigate more sophisticated image
registration approaches to solve this problem entirely. Currently,
we are recording in a controlled studio environment to obtain good
segmentations, but are confident that a more advanced background
segmentation will enable us to handle outdoor scenes.

Moreover, there is a resolution limit to our deformation capture.
Some of the high-frequency detail in our final result, such as fine
wrinkles in clothing or details of the face, has been part of the laser-
scan in the first place. The deformation on this level of detail is
not actually captured, but it is ”baked in” to the deforming surface.
Consequently, in some isolated frames small local differences in the
shape details between ground-truth video footage and our deformed
mesh may be observed, in particular if the deformed mesh pose de-
viates very strongly from the scanned pose. To illustrate the level of
detail that we are actually able to reconstruct, we generated a result
with a coarse scan that lacks fine surface detail. Fig. 9 shows an in-
put frame (l), as well as the reconstructions using the detailed scan
(m) and the coarse model (r). While, as noted before, finest detail
in Fig. 9(m) is due to the high-resolution laser scan, even with a
coarse scan, our method still captures the important lifelike motion
and the deformation details, Fig. 9(r). To further support this point,
the accompanying video shows a side-by-side comparison between
the final result with a coarse template and the final result with the
original detailed scan.

Also, in our system the topology of the input scanned model is pre-
served over the whole sequence. For this reason, we are not able
to track surfaces which arbitrarily change apparent topology over
time (e.g. the movement of hair or deep folds with self-collisions).
Further on, although we prevent self-occlusions during global pose
capture, we currently do not correct them in the output of surface
detail capture. However, their occurrence is rather seldom. Manual
or automatic correction by collision detection would also be feasi-
ble.

Our volume-based deformation technique essentially mimics elas-
tic deformation, thus the geometry generated by the low-frequency
tracking may in some cases have a rubbery look. For instance, an
arm may not only bend at the elbow, but rather bend along its en-
tire length. Surface detail capture eliminates such artifacts in gen-
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Figure 8: Side-by-side comparison of input and reconstruction of
a dancing girl wearing a skirt (input and virtual viewpoints differ
minimally). Body pose and detailed geometry of the waving skirt,
including lifelike folds and wrinkles visible in the input, have been
recovered.

eral, and a more sophisticated yet slower finite element deformation
could reduce this problem already at the global pose capture stage.

Despite these limitations we have presented a new non-intrusive ap-
proach to spatio-temporally dense performance capture from video.
It deliberately abandons traditional motion skeletons to reconstruct
a large range of real-world scenes in a spatio-temporally coherent
way and at a high level of detail.

7.2 Applications

In the following, we briefly exemplify the strengths and the usabil-
ity of our algorithm in two practical applications that are important
in media production.

3D Video Since our approach works without optical markings,
we can use the captured video footage and texture the moving ge-
ometry from the input camera views, for instance by using the
blending scheme from [Carranza et al. 2003]. The result is a 3D
video representation that can be rendered from arbitrary synthetic
views (see video and Fig. 10(l),(m)). Due to the highly-detailed un-

Figure 9: Input frame (l) and reconstructions using a detailed (m)
and a coarse model (r). Although the fine details on the skirt are due
to the input laser scan (m), even with a coarse template, our method
captures the folds and the overall lifelike motion of the cloth (r).

Figure 10: (l),(m) High-quality 3D Video renderings of the dancer
wearing a skirt. (r) Fully-rigged character automatically estimated
from a capoeira turn kick output.

derlying scene geometry the visual results are much better than with
previous model-based or shape from silhouette-based 3D video
methods.

Reconstruction of a fully-rigged character Since our method
produces spatio-temporally coherent scene geometry with practi-
cally no tangential distortion over time, we can reconstruct a fully-
rigged character, i.e. a character featuring an animation skeleton,
a surface mesh and associated skinning weights, Fig. 10(r), in case
this is a suitable parametrization for a scene. To this end we feed
our result sequences into the automatic rigging method proposed
in [de Aguiar et al. 2008] that fully-automatically learns the skele-
ton and the blending weights from mesh sequences. Although not
the focus of this paper, this experiment shows that the data captured
by our system can optionally be converted into a format immedi-
ately suitable for modification with traditional animation tools.

8 Conclusion

We have presented a new approach to video-based performance
capture that produces a novel dense and feature-rich output for-
mat comprising of spatio-temporally coherent high-quality geome-
try, lifelike motion data, and optionally surface texture of recorded
actors. The fusion of efficient volume- and surface-based deforma-
tion schemes, a multi-view analysis-through-synthesis procedure,
and a multi-view stereo approach enables our method to capture
performances of people wearing a wide variety of everyday apparel
and performing extremely fast and energetic motion. The proposed
method supplements and exceeds the capabilities of marker-based
optical capturing systems that are widely used in industry, and will
provide animators and CG artists with a new level of flexibility in
acquiring and modifying real-world content.
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STOLL, C., KARNI, Z., RÖSSL, C., YAMAUCHI, H., AND SEI-
DEL, H.-P. 2006. Template deformation for point cloud fitting.
In Proc. SGP, 27–35.
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